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ABSTRACT

Robotic systems for remediation of hazardous waste

sites must be highly reliable to avoid equipment failures

and the subsequent possible exposure of personnel to

hazardous environments.  Safe and efficient clean-up

operations also require accurate and complete knowledge

of the task space.  This paper presents the results of a

program, sponsored by the Department of Energy (DOE)

Federal Energy Center (FETC), to meet these needs.  To

enhance robot reliability, a conceptual design of a

monitoring and diagnostic system has been developed to

predict the onset of mechanical failure modes, provide

maximum lead time to make operational changes or

repairs, and minimize the occurrence of on-site

breakdowns.  To ensure safe operation, a comprehensive

software package has been developed to fuse data from

multiple surface mapping sensors and poses so as to

reduce the error effects in individual data points and

provide accurate three-dimensional (3-D) maps of a work

space. 

I.  INTRODUCTION

The safe and cost effective cleanup of hazardous

waste sites within the U. S. nuclear weapons production

complex requires the use of remotely controlled robotic

systems.  These robotic systems have to be robust to

stand the demands of the hostile environment.  Due to the

physical dangers associated with the waste site

surroundings, failed robots are not easily accessed by

humans to perform repairs and in extreme cases may

have to be hauled out by other robots or abandoned

altogether.  Monitoring and diagnostic systems are the

only means of providing early stage detection, isolation,

and tracking of developing faults before they result in

catastrophic failure.

A typical decontamination and decommissioning

(D&D) task involves facilities that contain a complex

maze of pipes, valves, gages and tanks supported on

large steel structures.  Because of the uncertain

knowledge of these facilities, due to incomplete and/or

missing records, sufficient information about the task

space has to be generated in situ to allow collision free

movement and sensor based grasping to support

dismantlement activities.  Task and tooling needs can

only be determined as more information is revealed

about the site.  The robotic actions, in addition, must be

performed with high confidence due to the extreme

safety hazard.

To address the above demanding requirements,

DOE has undertaken the development of a model-based

supervisory control architecture.  The key elements of

this architecture are the inclusion of an operator in the

control loop, a three-dimensional (3-D) "world model"

of the task space, surface mapping sensors to generate

topological information, a data fusion and a

visualization software module to integrate sensor data

and confirm and update the world model, and

monitoring and diagnostic technologies to provide

information about robot health.  The overall

development approach and the results achieved on the

data fusion software module and the monitoring and

diagnostic technologies are described below. 



II.  DATA FUSION SOFTWARE MODULE

When a surface mapping sensor scans a scene, the

resulting data is expressed in the coordinate frame

associated with the sensor's physical location and

orientation.  If the sensor moves, then any subsequent

data will be expressed in a different coordinate frame

related to the new location and orientation.  Therefore,

an essential requirement for combining data sets from

different poses is to first convert all data into a common

coordinate frame.  This process, called data (scene)

registration, requires the computation of the

transformation that exists between two sets of data

acquired from different poses of the sensor.  Although

registered data from multiple sensors/poses can be

combined directly without any further processing, a

fusion algorithm that weights sensor error can achieve

significantly better results by reducing the effects of

error in individual data points.  Such an algorithm thus

provides a more accurate map of the work space.

The development objective for the data fusion

module was to produce software that performs data

registration and data fusion functions for robotic

remediation systems.  To provide the most flexibility

for different applications, the data fusion module that

has been developed contains three components: a

registration software component, a fusion software

component, and a graphic user interface (GUI) software

with file management capability.  Each of these

software components is described below.

A.  Registration Software Component

The registration software component serves two

operational needs: to transform the data into a common

representation to permit the creation of a composite map

of a task space, and, to locate a robot in that task space. 

The first need arises from the requirement of accurately

combining data from multiple sensor scans, acquired

from different poses within a task space, in order to build

a 3-D representation of the task space that is adequate for

subsequent planning and execution activities.  In this case

the registration process determines the relative

transformation that exists between two or more data sets

acquired from different sensor poses.  The second need

arises from the requirement of accurately locating a robot

by means of measurements from a sensor mounted on its

end effector.  In this case, the registration process

estimates the pose of the robot end effector by

determining the transformation between the data

generated by its sensor and a set of corresponding spatial

coordinates stored in the GUI control files.

At the outset of this project, an evaluation of the

available registration algorithms and software was made

to identify the best technical solution compatible with the

schedule and cost constraints of the project.  Because the

preferred solution is a package of appropriate algorithms

and codes that have already been developed and tested,

inquiries were made with key members in the DOE

robotics community.  This interaction identified the

following six registration algorithms:

Feature Based Algorithm.  Developed by

Mechanical Technology Incorporated (MTI) for

Topographical Mapping Systems, this technique uses

three or more naturally occurring noncolinear objects in

the task space of simple geometric shapes, common in

the two data sets, to derive the transformation1 that will

bring the coordinate frames of the two data sets into

coincidence. 

 Iterative Closest Point (ICP) Algorithm.2 

Improved by Carnegie Mellon University (CMU), this

technique was devised to avoid the problem of feature

extraction for high-speed applications.  Scanned data is

matched to a model of a free-form surface, using an

iterative, least-squares ICP algorithm.

 ICP plus Spherical Attribute Image (SAI).3 
Developed by CMU, SAI is a technique for registering

scenes which have no features or fiducials, but only

free-form objects.

 Geometric Hashing.  Developed by CMU, this

algorithm provides a means to automate the registration

process by fitting data to a member of a library of

objects.  The technique provides a good initial estimate

of the pose which is refined by the ICP algorithm.



Coleman Research Corporation (CRC) Approach.

In this approach, registration is done with the help of

artificial targets placed in the work space. These targets

are typically spheres whose centers are the fiducial

points.  With corresponding data points, the pose is

estimated via an iterative, least-mean-square technique.

Fourier Transform.4  Developed by the University

of Florida, this technique was devised for efficient

updating of robotic world models.  The Fourier transform

technique is used to register the two images (in scale,

rotation, and translation), so that a subtraction will reveal

the changes present in the current configuration. 

Based on the comparative evaluation of the above

techniques, their states of development, and

programmatic risk considerations, the feature-based

registration technique was selected.  This technique is a

four-step process that requires algorithms for feature

data segmentation, feature surface characterization,

computation of fiducial points, and computation of the

transformation (pose estimation) required to converge

the two data sets.  The following operational scenario

illustrates this approach.

1.  Using existing facility drawings, video images,

and 3-D visualization software, a set of reference

targets are identified.  These targets are naturally

occurring objects of simple geometric shapes having

features that allow computation of fiducial points. (A

target has features which define a fiducial. For

example, the intersection of two pipes contains two

cylinders, whose closest approach defines a line

segment whose mid-point is a fiducial.)  The design

supports the following set of reference features.

• Corner formed by three walls. The components are

three plane surfaces.  The fiducial is the point

where the line formed by the intersection of two of

the planes intersects the third plane.

• Pipe intersecting a wall. The components are a

cylinder and a planar surface.  The fiducial is the

intersection of the axis of the cylinder with the

plane.

 

• Intersection of two non-parallel pipes.  The

components are two cylinders while the fiducial is

the midpoint of the line connecting the closest

approach of the two non-parallel cylinder axes.

• Cylinder intersecting an end-cap or dome.  The

components are a cylinder and a quadric surface.

The fiducial is the intersection of the cylinder axis

with the quadric surface.

2.  For each target feature component in each data

set, the system operator encloses the relevant data in a

region-of-interest box.  The enclosed spatial data is

segmented and output to the registration software.

3.  Geometric forms are fit to the segmented data

(plane, a quadric surface, or a cylinder) and the fiducial

points computed.  The output of this algorithm is the

estimated position of the fiducial point and a goodness

of fit metric.

4.  The corresponding fiducials in the two data sets

of interest are identified and forwarded to the pose

estimation algorithm that computes the transformation

between the two sensor poses. 

The individual elements in the fiducial algorithms

and the pose estimation algorithm were coded and

checked. Upon completion, individual modules were

validated at the unit level using simple test data sets. 

At the system level, more complex task spaces were

modeled, including existing mapping data from the acid

fractionator at ORNL and the piping mock-up at CMU.

 The feature-based registration technique proved to be

effective in each case.

B.  Fusion Software Component

The purpose of the fusion software is to convert

sensor measurements of the geometry of the task space

into a 3-D spatial data representation, called occupancy

maps.  These occupancy maps store a scalar parameter,

the probability of occupancy, the value of which

indicates, to various degrees of certainty, the areas that

are free regions and the areas where encounters with



solid surface is likely.  Along with the occupancy map,

the software computes a 3-D confidence map.  The

scalar value stored in each cell of the confidence map

represents the degree to which the corresponding

probability of occupancy value is supported by the

source data.  The 3-D occupancy map and 3-D

confidence map are basic outputs of the fusion software

that can be interpreted through visualization using  the

Interactive Computer-Enhanced Remote Viewing

System (ICERVS), developed by MTI under separate

DOE funding (DE-AC21-92MC29113).  In summary,

the fusion software requires the following three key

elements, the sensor error model, the occupancy map

algorithm, and the confidence map algorithm.

1.  Sensor Error Model.  The sensor error model is

a user supplied external function which is dynamically

linked to the Fusion Software Module at the run time. 

The sensor error model is specific to each sensor and

contains the effects of many factors including basic

sensor physics, its mechanical repeatability, the target

surface roughness, color, and reflectance, and the

environmental effects such as task space temperature

and humidity.  

Surface mapping sensors selected by DOE for

facility mapping system include a laser radar and a

structured light sensor.  For the laser radar, the typical

error sources after calibration include noise in the light

detection hardware, mechanical scanner jitter, signal

attenuation from surface tilt and curvature, and

variation in speed of light due to changes in

temperature and humidity.  For structured light sensor

the errors include quantization error associated with the

basic optical resolution, mechanical positioning errors,

and the surface induced distortion of the laser

illumination.  In general these errors have Gaussian

distribution in the three orthogonal directions and can

therefore be spatially described by three variance

values.  Given the coordinates of a measured point, the

sensor error model will compute the set of variances

associated with the range, azimuth, and elevation of the

particular point.  These variances are used to generate

probability density function using Gaussian uncertainty

distribution.

 Since the surface and environmental effects induce

significant errors, the sensor error model, for it to be

useful, needs to be based on experimental

characterization.  For the present project, the sensor

error model for the structured light sensor is based on

work performed at MTI for the development of a

Topographical Mapping System (TMS).  The laser

radar sensor error model is based on the results

obtained from the Oak Ridge National Laboratory

(ORNL) testing of a Coleman FM laser sensor. 

2.  Occupancy Map Software.  Given a set of

sensor measurements and the associated sensor error

model, the occupancy map algorithm constructs a three

dimensional occupancy grid where each cell in the grid

is characterized by the probability that it is occupied. 

A value of "0" indicates that the cell is known to be

unoccupied or empty, while a value of "1" indicates

that the cell is known to be occupied or full.  Initially,

the probability of occupancy for all cells is set equal to

1/2 and flagged as unmapped.

To create the occupancy map for a data set, the

fusion software retrieves the sensor error model for that

sensor and determines the error variances for each

point.  This permits the computation of a spatial

occupancy profile for a data point that also reflects the

fact that the sensor must have a clear line of sight to

that data point.  This computation is repeated for each

data point to create the occupancy map for that data set.

Data fusion is performed when the individual

occupancy maps such as those described above, are

combined using Bayesian integration, to form a fused

occupancy map. 

Algorithms required for implementation of the

Fusion software were defined first.  Prototyping effort

of the 2-D and 3-D version of the algorithm indicated a

need to preprocess the sensor data for conflict

resolution, which has been developed and

implemented.  The occupancy map software was

designed, developed and successfully implemented.

3.  Confidence Map Software.  Development of

Confidence Map software was subcontracted to Dr.

Mongi Abidi of University of Tennessee-Knoxville. 



For each cell in the confidence map, a confidence

metric is computed to estimate the extent to which the

corresponding probability of occupancy value can be

presumed valid.  The confidence metric reflects the

relative insensitivity of the probability of occupancy to

the assumptions made in computing it.  These

assumptions include, for example, the parameter values

chosen in the sensor error model.  This work was

successfully accomplished and the results integrated in

to the remainder of the software.

C.  Graphic User Interface

The ICERVS GUI was expanded to provide a user

friendly interface to the Data Fusion module.  The system

architecture integrates the Data Fusion Module with

ICERVS and provides a seamless interface between the

two systems and the user.  The GUI interacts with both

the Registration and Fusion software.

Figure 1 illustrates the concept of visualizing

registered and fused data using synthetic data.  The left

side of the figure shows data from two sensor locations

that, when properly registered, provide the user with an

integrated scene that contains information that would

be hidden from either one of the sensor locations alone.

The right side of the figure shows the results of fusing

this data.  The color bar at the bottom of the figure

shows percent occupancy, with blue indicting that their

is good confidence that the space is unoccupied, and

blue indicating high confidence that the space is

occupied (i.e., the surface of a mapped object).

Figures 2 and 3 show data obtained from a laser

range finder that was used to map a piping mock-up at

CMU.  The lower left portion of Figure 2 shows an

overlap of three poses.  The upper portion shows an

enlargement of a portion of the image, with fiducial

points more clearly visible.  The right side of the figure

shows a registered scene of all three poses, with the

result being a more clear representation of the actual

mock-up.  Figure 3 shows associated occupancy and

confidence maps of this scene.  In essence, the

occupancy map contains estimates of the likelihood of

cell occupancy while the confidence map expresses the

trustworthiness of the estimates.

III.  MONITORING AND DIAGNOSTICS

The simplest form of condition monitoring of

robots is implemented by periodic inspections. 

Periodic inspections comprise an important part of

maintenance programs because they effectively detect

problems that provide visible evidence before affecting

operation (cracked hoses, leaky seals, dust-clogged

radiators).  Periodic inspections obviously offer no

value if a sudden failure occurs during operation. 

Limit-checking of onboard sensors is the next step

and another important part of condition monitoring of

robots.  With this approach, a fault is assumed to have

occurred if a sensor measurement exceeds a

prespecified threshold value.  Limit-checking is

typically employed to protect against sudden overload,

control breakdowns, and serious operator errors by

annunciation or shutting down the system in trouble

when thresholds are exceeded.  The main advantages of

using limit-checking is that it is computationally simple

to implement and provides protection when major

faults occur; however, this is often too late to avoid

serious operational problems and work interruptions. 

Rosie currently has several onboard sensors; however,

these are only used for motion feedback.

Developing a practical monitoring and diagnostic

system for the mobile robot system is a complex task. 

A successful system will use several approaches

ranging from simple limit checking for certain failure

modes to some of the more advanced techniques that

are discussed below.  Optimum robot reliabilities will

be achieved when deployment of such a system is done

in combination with a maintenance program which

includes at least some periodic inspection. 

The system design effort was preceded by the

following steps: a) analysis of D&D robots, 

represented in this case by the Rosie mobile

worksystem developed by Redzone Robotics and

CMU, to determine failure modes, relative criticalities,

and fault-symptoms; b) review and evaluation of the

current literature to search out applicable diagnostic

and prognostic methodologies; c) specification of the



system requirements; and d) development of a design

strategy. 

 The following subsections note the results

achieved in these areas.

A.  Identification of Component Failure Modes

One of the most important aspects in the analysis

of robot failure modes is the criticality of different

components and different failure modes to robot

operation.  Establishing a criticality ranking is

necessary to ensure that the monitoring and diagnostic

system gives highest priority to those failure modes

with the greatest effect on robot operation.

To develop failure mode criticality and fault-

symptoms, information was gathered from several

sources and put into a relational database.  Engineering

data describing the design of the Rosie platform was

supplied by Redzone Robotics.

A functional schematic was generated describing

each major subsystem and function path.  A Component

Application Table was generated listing each

mechanical element.  Generally, the breakdown stopped

at the individual components as assembled onto the

platform such as the wheel drive motor rather than

smaller pieces such as rotors, housings, seals, bearings,

etc.  This generally worked well as failure mode data

are available describing such mechanisms as complete

components.  A criticality level was defined which

placed each component in one of three categories based

on failure effects: 1) possible damage to robot or work

area, self removal may not be possible; 2) work

assignment cannot be completed, self removal may be

possible; and 3) work assignment can be completed,

maintenance is necessary.

A Possible Failure Modes Table was also put

together.  For each component, this table lists each

failure mode that is thought to be reasonably possible

within the existing application.  Various sources in the

open literature and MTI internal reports were used as

sources for this data.  The information for each failure

mode lists the failure data for several representative

component types.  Primary cause and symptoms are

given.  The former generally serves to complete the

definitions of a given failure mode. Speed of failure

and probability of failure are also included in the table.

The former is given as either sudden or gradual and

provides the logical basis to prompt the diagnostic

system to act quickly for sudden faults while allowing

additional diagnostic time for gradual failure modes. 

Probability of failure is assigned as low, medium, or

high and is based on a qualitative assessment of the

failure mode for the application.

The Component Application Table and the

Possible Failure Modes Table were combined to form a

Master Component Failure Mode Table.  This

combines some 600 system failure modes.  As the

design process proceeds a down-selection of the most

important failure modes should be made to keep the

system to a manageable size.

B.  Identification of Applicable Technologies

A survey was conducted to identify monitoring and

diagnostics systems available in the literature for robot

manipulators.  The literature survey revealed

diagnostics methods for robots in four broad areas:

dynamic model-based diagnostics, expert systems,

pattern classifiers, and hybrid diagnostic systems.  In

model-based diagnosis, the main motivation is to

represent the robot dynamics in the diagnostic system

for early detection of faults.  Merits and problems of

four model-based methods, namely parameter

estimation5, analytical redundancy 6, stochastic

filtering7, and dynamic thresholds8 were evaluated. 

In the expert systems area, two types of methods

based on shallow and deep knowledge are available. 

Shallow expert systems derive their knowledge from

Fault Trees, Failure Mode and Effects diagrams, Event

Trees or if ¼ then rules.  Deep expert systems, on the

other hand, derive their diagnostic knowledge from the

structure and function of the robot components and

store it in form of rules for diagnosis.  Only one such

system was developed by Krishnamurthi and Phillips9

to address fault diagnosis of robot electronics. 

In pattern classification based diagnosis, two

methods using fuzzy set theory and neural networks



have been applied to robot diagnosis.  A fuzzy pattern

classifier has been developed by Tzou et al.10 for

detection of abrupt speed changes in the robot using

vibration sensors.  In the neural network application, a

Cerebellar Model Articulation Controller (CMAC)

algorithm has been developed for manipulator fault

detection.11 

Hybrid diagnostic methods have been proposed in

the literature to overcome the problems associated with

individual methods by using combinations of dynamic

models, expert systems, and pattern classifiers.  Two

well-developed hybrid methods are available. 

Isermann and Freyermuth12,13 developed a hybrid

method using a combination of parameter estimation

method and fault-symptom trees to identify abnormality

in the robot and relate the abnormality to component

faults, respectively.  Schneider and Frank14 proposed a

fuzzy logic-based threshold adapting expert system for

observer-based dynamic fault detection system.  Most

of the advanced methods for robot diagnosis are

included in a survey by Dhillon and Anude.15

The literature survey revealed very few papers in

the area of prognostics of robots indicating that this

area is not as mature as the diagnostic area.  There are

two prognostic methods for predicting the reliability of

general mechanical components.  The first method

predicts the failure of a component due to fatigue

resulting from cyclic loading using fatigue strength

models, whereas the second method uses probability-

based models (Gaussian and Weibull distributions) to

predict the number of cycles a component will survive.

Although fault tolerance methods are not directly

related to fault diagnosis, because of their importance

with regard to robot reliability and their abundance in

literature, these methods were also reviewed.  The review

provided information that will be considered in

development of a diagnostic system for the Rosie mobile

worksystem which has an interface/capability to

incorporate fault tolerance algorithms.  This interface

will allow the diagnostic system to use fault tolerance

algorithms for on-line identification of components

critical to the mission in the presence of impending

component failures.  Based on information obtained from

the literature review, a list of diagnostic methods

applicable to the Rosie mobile worksystems have been

compiled along with a list of possible sensors for

monitoring the worksystem.  This list currently includes

position sensors (encoders, resolvers), tachometers, flow

sensors, pressure sensors, liquid level indicators,

vibration sensors, acoustic sensors, etc.  A trade-off study

has been conducted to understand the relevance and

applicability of the various diagnostic methods to the

Rosie mobile worksystem.  The study included the types

of sensory signals these methods operate on, the signal

preprocessing required, the computational requirements

of these methods, and their sensitivity to faults.

C.  Design Strategy and Conceptual Design

In order to develop a design strategy for a

diagnostic system, a set of design requirements are

needed.  For the Rosie mobile worksystem, these

design requirements were developed based on the

operational requirements of a robot to be used for

D&D, the literature survey, discussions with the

customer and the end user, and prior MTI experience in

the area of diagnostics.  The following design

requirements have been identified for developing a

diagnostic system for the Rosie mobile worksystem:

• The diagnostic system must operate on-line.

• It must give indication of critical failures at the

earliest possible time.

• It must have the ability to cope with the dynamic

nature of robot operation.

• It must be able to represent complex relations

between faults and sensors signals.

• It must be able to use approximate diagnostic

information in the form of approximate probability

of failure values and failure propagation rates.

• It must have the ability to integrate sensory

information (from diverse set of sensors, human

input, etc.) into a cohesive diagnostic strategy.

• It must consider the influence of the robot's

environment on component failures.



• It must require the least number of sensors.

• It must have an interactive interface for user to

enter information he/she perceives through others

sensors (e.g., video images).

• It must be computationally inexpensive.

• It must be conducive to integration of prognostic

and fault tolerance algorithms.

It is clear from the above list that many of these

requirements are in conflict.  For example, the ability to

integrate various sensors would require large

processing time which directly conflicts with the on-

line operation requirement.  The design of a diagnostic

system for the robot aims at achieving a balance

between these conflicting design requirements.

Based on the above requirements, a preliminary

conceptual design of a diagnostic system has been

developed for the Rosie.  This diagnostic system is a

hybrid between dynamic-model-based methods and

shallow expert systems.  The dynamic model was used

to generate deviations in position/velocity during the

robot’s operations.  Along with other sensor signals

(e.g., pressure, temperature, flow, etc.), these deviations

were then used for hierarchical fault detection and

diagnosis.  In the first hierarchy, fault detection will be

performed using signals from various robot sensors,

while in the second, third, and fourth hierarchies, faulty

robot subsystems, components and component failure

modes will be identified.  A hierarchical diagnostic

system was deemed necessary to achieve a good

balance between providing fast on-line fault detection

and diagnosis and a time-consuming search process

required to identify individual faults.  A hierarchical

design allows fast fault detection to be performed on-

line.  On detecting a fault, the diagnostic system should

immediately inform the operator and then perform the

more time-consuming fault diagnosis.

The conceptual design of the diagnostic system

was performed, a cost-benefit analysis was conducted

to evaluate the cost of implementing the diagnostic

system and the expected benefits.  Based on estimates

of the number of robot units to be put into operation in

the near future, the types of operation they would be

performing, the expected benefits from the diagnostic

system in terms of down time and money saved was

evaluated.  Also, the hardware/software required to

implement the diagnostic system and integrate it with

the robot's subsystems has been assessed.
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Figure 1.  Registered and Fused Data from Two Sensor Locations



Figure 2.  Laser Range-finder Data of Piping Mock-up from Three Poses



Figure 3.  Fused Data from Piping Mock-up


